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Abstract We present a new geometric approach to the study of static isolated
general relativistic systems for which we suggest the name geometrostatics. Af-
ter describing the setup, we introduce localized formulas for the ADM-mass and
ADM/CMC-center of mass of geometrostatic systems. We then explain the pseudo-
Newtonian character of these formulas and show that they converge to Newtonian
mass and center of mass in the Newtonian limit, respectively, using Ehlers’ frame
theory. Moreover, we present a novel physical interpretation of the level sets of the
canonical lapse function and apply it to prove uniqueness results. Finally, we sug-
gest a notion of force on test particles in geometrostatic space-times.

1 Introduction

Static isolated general relativistic systems have been studied from a number of per-
spectives including their regularity, compactification and asymptotic considerations,
symmetry classifications, construction of explicit solutions etc. They serve as mod-
els of static stars and black holes. Also, they play an important role in R. Bartnik’s
definition of quasi-local mass and his associated conjecture on static metric exten-
sions [1].

Here, we present a new geometric approach to the study of static isolated sys-
tems and their physical properties for which we suggest the name geometrostatics.
We consider space-times that are static (possess a smooth global time-like Killing
vector field that is hypersurface-orthogonal) and isolated (see below). Static space-
times generically possess a 3+1-decomposition with vanishing shift vector. In this
canonical decomposition, the canonical lapse function is time-independent and co-
incides with the Lorentzian length of the time-like Killing vector field. The space-
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like time-slices orthogonal to the time-like Killing vector field are all isometric and
have vanishing extrinsic curvature, see Figure 1. Their induced Riemannian metric
is time-independent. We will subsequently identify all canonical time-slices.

Fig. 1 The time-slices of
a canonically decomposed
static space-time.
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For our purposes, static systems are called isolated if the Riemannian metric and
the lapse function on the time-slice decay suitably fast to the flat metric and the
constant 1, respectively, at spacelike infinity see [2] for a precise definition of our
asymptotic flatness condition in the language of weighted Sobolev spaces. More-
over, we request that the space-time satisfies the vacuum Einstein equations outside
some spatially compact tube in the space-time (or, in other words, outside some
compact set in the time-slice). This can be interpreted as a (spatially) finite exten-
sion of the sources, whether they are matter sources and/or black holes.

This article is structured as follows: In Section 2, we will introduce the central
equations of geometrostatics and summarize a few of their central analytic prop-
erties. In Section 3, we present a novel physical interpretation of the level sets of
the lapse function of a geometrostatic system and discuss some applications of this
insight. In Section 4, we will perform a conformal transformation into what we
suggest to call pseudo-Newtonian variables. Moreover, we will define and analyze
localized surface integral expressions for the mass and center of mass of geometro-
static systems. Finally, in Section 5, we will discuss the Newtonian limit of geomet-
rostatics.

Further details can be found in my thesis [2].

2 Geometrostatics

The Lorentzian metric of a generic static space-time R×M3 can globally be decom-
posed as

ds2 =−N2c2dt2 +g, (1)

where N :=
√
−ds2(∂t ,∂t) is the (canonical) lapse function arising as the Lorentzian

length of the time-like Killing vector field ∂t , c is the speed of light, and g is the
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Riemannian metric induced on the time-slice M3. Observe that N is non-negative
and vanishes only along Killing horizons.

In the vacuum region outside the matter, the (vacuum) Einstein equations imply
that these variables satisfy the so-called vacuum static metric equations

N Ric = ∇2N (2)
△N = 0, (3)

where Ric is the Ricci curvature tensor of g, ∇2N denotes the covariant Hessian,
and △N denotes the covariant Laplacian of N with respect to g. It is well-known
that solutions to the vacuum static metric equations are real analytic in suitable
coordinates [3].

We define a geometrostatic system to be an asymptotically flat Riemannian 3-
manifold (M3,g) endowed with a smooth positive lapse function N so that the vac-
uum static metric equations (2) and (3) are satisfied. Hence, geometrostatic systems
model the vacuum region outside the support of the matter and the horizons of all
black holes within a slice of an asymptotically flat static space-time. The lapse func-
tion N describes the lapse of time in the space-time.

3 The Level Sets of the Lapse

In Newtonian gravity, the relevant gravitational variable is the Newtonian potential.
The gradient of the potential defines the force on a unit mass test particle. This
has a well-known consequence for the equipotential surfaces (or level sets of the
Newtonian potential): if a test particle is constrained into one of these surfaces then
the gravitational force does not have a tangential component and hence the test
particle does not tangentially accelerate within the surface, see Figure 2.

Fig. 2 A test particle con-
strained to a surface Σ .
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Surprisingly, the “same” is true for level sets of the lapse function in a geomet-
rostatic system. In order to make this rigorous, we make the following definitions:
Consider a closed smooth surface Σ ⊂ M3 in a geometrostatic system (M3,g,N)
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arising as the n = n0 level set of a smooth function n : M3 → R. A time-like1 curve

µ(τ) = (t(τ),x(τ)) (4)

satisfying x(τ) ∈ Σ is called a test particle constrained to Σ if it is a critical point of
the time functional

T (µ) :=
∫ τ1

τ0

{|µ̇(τ)|+σ(n◦ x(τ)−n0)}dτ, (5)

where σ ∈ R is a Lagrange multiplier ensuring that all comparison curves are also
constrained to Σ . With this notion of constrained test particle, we say that a smooth
closed surface Σ is an equipotential surface if every test particle constrained to Σ
is a geodesic in Σ with respect to the induced 2-metric, see Figure 2. Analyzing
the geodesic equation, we find that a surface Σ ⊂ M3 is an equipotential surface in
(M3,g,N) if and only if Σ is a level set of N. Thus, the level sets of the lapse function
N in geometrostatics play precisely the same role as those of the Newtonian potential
in Newtonian gravity.

In a static vacuum space-time, the Einstein constraint equations reduce to Scal =
0. In particular, the lapse function does not appear in this constraint equation. As
a consequence, Choquet-Bruhat’s theorem (see e.g. [4]) on the local existence and
uniqueness of solutions to the Einstein equations implies that the space-time induced
by (M3,g,N) is in fact independent2 of the lapse function N. Combining this view
of the lapse function with the physical interpretation of its level sets of the lapse as
well as with the vacuum static metric equations (2) and (3) and the assumed asymp-
totic conditions for g and N, we obtain that the lapse function is indeed unique if
it exists. This is to say that if (M3,g,N) and (M3,g, Ñ) are geometrostatic systems,
then N = Ñ. We interpret this result as saying that “there is only one way of syn-
chronizing time at different locations in a geometrostatic space-time such that one
sees staticity” just as, for a geodesic, “there is only one way of walking along a
geodesic such that one does not accelerate (up to affine transformations of the curve
parameter)”. The affine freedom of the parameter along the geodesic does not make
an appearance in the geometrostatic space-time picture because we fixed the lapse
function to asymptotically converge to 1 at spacelike infinity and therewith fixed the
time unit.

4 Pseudo-Newtonian Gravity

The geometrostatic variables g and N are ideal for investigating geometric and rel-
ativistic effects influencing test particle behavior and the behavior of light rays. In
order to better understand asymptotic and analytic properties of solutions, however,

1 Here, time-like curves and the time functional are taken with respect to the static space-time
metric ds2 =−N2c2dt2 +g induced by (M3,g,N).
2 This assumes that the lapse function exists in the first place.
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it is more convenient to perform a conformal change and consider the new variables

γ := N2g (6)
U := c2 lnN. (7)

These variables have been used by many authors3, see e.g. [5]. We suggest to call
them pseudo-Newtonian metric and potential, respectively. The vacuum static met-
ric equations (2), (3) translate into

Ricγ = 2c−4 dU ⊗dU (8)
△γU = 0, (9)

where Ricγ denotes the Ricci curvature tensor of γ and △γ denotes the γ-covariant
Laplacian on M3.

N was assumed to converge to 1 asymptotically at spacelike infinity, so U must
asymptotically tend to 0. Indeed, Kennefick and O’Murchadha [5] showed that the
asymptotic flatness assumptions incorporated into the above definition of a geomet-
rostatic system induce the decay conditions

γi j = δi j +O(r−2) (10)

U = −mG
r

+O(r−2) (11)

as r → ∞ in suitable coordinates. Here, m is the ADM-mass of the slice (M3,g),
see [6, 7, 8]. In [2], we prove asymptotic estimates in weighted Sobolev spaces that
improve this fall-off result. In particular, we find that

γi j =

(
1− M2

r2

)
δi j +

2M2xix j

r4 +O(r−3) (12)

U = −mG
r

− mGzA ·x
r3 +O(r−3), (13)

as r → ∞, where M = mG/c2 and zA ∈ R3 is a fixed vector. This decay occurs in
asymptotically flat γ-harmonic coordinates. As a matter of fact, these coordinates
coincide with the asymptotically flat (spatial) wave-harmonic coordinates on (R×
M3,ds2 =−N2c2dt2 +g). The vector zA can be interpreted as the coordinate vector
of the asymptotic center of mass of the system, see below.

In terms of the pseudo-Newtonian variables γ and U and inspired by Newtonian
gravity, we suggest the following quasi-local definitions of pseudo-Newtonian mass
and center of mass4 of a geometrostatic system (M3,g,N) with associated pseudo-
Newtonian variables (γ ,U)

3 albeit without explicit reference to the speed of light.
4 We note that our discussion of center of mass only applies to systems with non-vanishing mass.
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mPN(Σ) :=
1

4πG

∫
Σ

∂U
∂ν

dσ (14)

zPN(Σ) :=
1

4πGm

∫
Σ

(
∂U
∂ν

x−U
∂x
∂ν

)
dσ , (15)

where Σ is any surface enclosing the support of the matter, ν and dσ are the outer
unit normal to and area measure of Σ with respect to γ , and x is the vector of γ-
harmonic coordinates.

Surprisingly, both of these expressions are independent of the particular choice
of surface Σ (as long as the surface encloses the support of the matter, imagine for
example a large coordinate sphere). For the pseudo-Newtonian mass (14), this inde-
pendence of the surface can be seen by combining Equation (9) with the divergence
theorem. For the center of mass (15), the independence of the surface follows from
Equation (9) combined with Green’s formula and the fact that the coordinates are γ-
harmonic such that △γ x = 0. We will thus drop the explicit reference to the surface
when referring to pseudo-Newtonian mass and center of mass.

Using the asymptotic decay (10), (11), we find that

mPN = mADM. (16)

The total mass of a geometrostatic system is thus localized. It can be read off exactly
on any surface enclosing the matter. Applying Formula (14) to any smooth surface
Σ ⊂ M3, we immediately obtain a notion of mass for an arbitrary part of the system
(namely the part bounded by the surface Σ ). By the divergence theorem and (9), the
masses of all components in a multi-component system add up to the total mass of
the system just as Newtonian masses do.

If we combine the asymptotic decay (12), (13) with Formula (15) defining the
pseudo-Newtonian center of mass, we find that zPN = zA. We claim that this vector
can indeed be physically interpreted as the coordinate vector of the total center of
mass of the system. For this, we exploit Huang’s work [9] showing that the ADM-
center of mass [6] coincides5 with the CMC-center of mass constructed via a con-
stant mean curvature (CMC) foliation near infinity by Huisken and Yau [10] and
generalized by Metzger [11]. Using again (12) and (13), we obtain

zPN = zA = zADM = zCMC (17)

which justifies the name center of mass for the quantities zPN and zA. Moreover,
this shows that the center of mass of a geometrostatic system is also localized. As
above, we obtain a notion of center of mass for an arbitrary part of the system
(namely the part bounded by the surface Σ ). By Green’s formula, γ-harmonicity of
the coordinates, and (9), the centers of mass of all components in a multi-component
system add up to the total center of mass of the system just as Newtonian centers of
mass do.

5 under precise fall-off conditions at spacelike infinity that are satisfied here.
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5 The Newtonian Limit of Geometrostatics

Intuitively, the mass and center of mass of a relativistic system should converge to
the Newtonian mass and center of mass of its Newtonian limit c → ∞. To make this
precise, we use Ehlers’ frame theory [12] which unifies general relativity (GR) and
Newton-Cartan gravity (NC) into a common geometric framework with geometric
variables g,h,Γ and matter tensor T .

In frame theory, taking the Newtonian limit corresponds to taking a parametric
curve of solutions of GR with parameter λ = c−2 to its limit λ → 0, see Figure
3. Modeling Killing vector fields, staticity, and asymptotic flatness in frame theory,
we show that the pseudo-Newtonian potential converges to the Newtonian potential
and the metric γ converges to the flat metric along any family of geometrostatic
systems that possesses a static Newtonian limit. As the localized pseudo-Newtonian
formulas (14) and (15) are nearly identical with the Newtonian formulas, this proves
that indeed the relativistic mass and center of mass converge to their Newtonian
counterparts.

g, h, T,Γ

GR

λλ = 0: NG

g, h, T,Γ

GR

interest

theory of

λλ = 0: NC

Fig. 3 The universe of Ehlers’ frame theory and the Newtonian limit.

6 Conclusion and Outlook

Geometrostatic systems share many features with Newtonian ones. First, the level
sets of the lapse function N (or, equivalently, those of the pseudo-Newtonian poten-
tial U = c2 lnN) have the same equipotential properties as the level sets of the New-
tonian potential. We thus define the force on a unit mass test particle as F :=−∇γU
where ∇γ denotes the γ-covariant gradient. A second Newtonian type law holds for
this notion of force [2].

Secondly, the total mass and center of mass of a geometrostatic system are lo-
calized. We put forward explicit geometric formulas for them that also allow for the
computation of the notions of mass and center of mass of individual regions. We
applied these formulas to prove consistence of ADM-mass and ADM/CMC-center
of mass with the Newtonian limit.
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This fact and the notion of force might turn out useful for the study of the well-
known static n-body problem and of Bartnik’s conjecture [1].
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